79 research outputs found

    Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control

    Get PDF
    The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range. The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06. Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the Au surface diffusion coefficient was evaluated in D(T) = [(7.42 × 10−13) ± (5.94 × 10−14) m2/s]exp(−(0.33±0.04) eVkT). These quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological characteristics of the Au film simply controlling the annealing temperature and time

    Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells

    Get PDF
    Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D "architecture" for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate

    Wear effects in retrieved acetabular UHMW-PE cups

    Get PDF
    There is an increasing awareness of the clinical problems associated with ultra-high-molecular-weight polyethylene (UHMW-PE) wear and failure in orthopaedics. This disadvantage is certainly promoted from the various oxidation process that can occur during prosthesis life. Scanning electron microscopy, IR-spectroscopy, and X-ray-photoelectron spectroscopy were employed to investigate the mechanism of polymer degradation. In particular, comparison among the spectra of starting and retrieved UHMW-PE components shows that the polymer oxidizes mainly in vivo. The data indicate that hydroxyl radicals are likely to be a major factor in degradation of the surface of this polymer, these groups are produced in vivo during the implantation time. Several other chemical groups, produced in the different steps of the prosthesis life, are contained in the material

    Information Guide: Cyprus. March 2015

    Get PDF
    A guide to information sources on the Republic of Cyprus, with hyperlinks to information within European Sources Online and on external websites (For other language versions of this record click on the original url

    Different strategies for improving summer thermal comfort in heavyweight traditional buildings

    Get PDF
    In order to exploit the passive energy potential of the building envelope, it is important to provide a right combination of insulation thickness, heat capacity and night-time ventilation. In this paper, this issue will be tackled with reference to an historic building in Catania (Southern Italy). The building was built at the end of the XIX century, and its opaque envelope is entirely made with lava stones, which is typical of traditional architecture in this area. Starting from the current configuration of the building, many hypotheses for refurbishment are considered, combined with different strategies for passive cooling, such as night-time ventilation, use of shading devices and adoption of highly-reflective coatings. The effectiveness of each solution in terms of summer thermal comfort is evaluated through dynamic thermal simulations carried out with EnergyPlus. The results show the synergic effect of these strategies, as well as their individual impact, and allow to draw some general conclusions about the behaviour of heavyweight buildings under moderately hot weather conditions

    Adsorption of the rhNGF Protein on Polypropylene with Different Grades of Copolymerization

    Get PDF
    The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term

    Essential Spectrum for Maxwell’s Equations

    Get PDF
    We study the essential spectrum of operator pencils associated with anisotropic Maxwell equations, with permittivity Δ, permeability ÎŒ and conductivity σ, on finitely connected unbounded domains. The main result is that the essential spectrum of the Maxwell pencil is the union of two sets: namely, the spectrum of the pencil div((ωΔ+iσ)∇⋅), and the essential spectrum of the Maxwell pencil with constant coefficients. We expect the analysis to be of more general interest and to open avenues to investigation of other questions concerning Maxwell’s and related systems

    MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions

    Get PDF
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) are continuously attracting attention for both fundamental studies and technological applications. The physical and chemical properties of ultrathin TMD sheets are extraordinarily different from those of the corresponding bulk materials and for this reason their production is a stimulating topic, especially when the preparation method enables to obtain a remarkable yield of nanosheets with large area and high quality. Herein, we present a fast (<1 h) electrochemical exfoliation of molybdenum disulfide (MoS2) via lithium-ion intercalation, by using a solution of lithium chloride in dimethyl sulfoxide (DMSO). Unlike the conventional intercalation methods based on dangerous organolithium compounds, our approach leads to the possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the semiconducting 2H phase (∌60%), as estimated by X-ray photoelectron spectroscopy (XPS). The electrical properties of the exfoliated material were investigated through the fabrication and characterization of back-gated field-effect transistors (FETs) based on individual MoS2 nanosheets. As-fabricated devices displayed unipolar semiconducting behavior (n-type) with field-effect mobility ”FE ≀ 10−3 cm2 V−1 s−1 and switching ratio Ion/Ioff ≀ 10, likely limited by 1T/2H polymorphism and defects (e.g. sulfur vacancies) induced during the intercalation/exfoliation process. A significant enhancement of the electrical performances could be achieved through a combination of vacuum annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain alkanethiols, resulting in ”FE up to 2 × 10−2 cm2 V−1 s−1 and Ion/Ioff ≈ 100. Our results pave the way towards the fast preparation – under ambient conditions – of semiconducting MoS2 nanosheets, suitable for application in low cost (opto-)electronic devices

    Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    Get PDF
    We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer
    • 

    corecore